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Estimation of Image Rotation Angle Using
Interpolation-Related Spectral Signatures With
Application to Blind Detection of Image Forgery

Weimin Wei, Shuozhong Wang, Xinpeng Zhang, and Zhenjun Tang

Abstract—Motivated by the image rescaling estimation method
proposed by Gallagher (2nd Canadian Conf. Computer & Robot
Vision, 2005: 65-72), we develop an image rotation angle estimator
based on the relations between the rotation angle and the frequen-
cies at which peaks due to interpolation occur in the spectrum of
the image’s edge map. We then use rescaling/rotation detection
and parameter estimation to detect fake objects inserted into im-
ages. When a forged image contains areas from different sources,
or from another part of the same image, rescaling and/or rotation
are often involved. In these geometric operations, interpolation
is a necessary step. By dividing the image into blocks, detecting
traces of rescaling and rotation in each block, and estimating
the parameters, we can effectively reveal the forged areas in an
image that have been rescaled and/or rotated. If multiple geo-
metrical operations are involved, different processing sequences,
i.e., repeated zooming, repeated rotation, rotation-zooming, or
zooming-rotation, may be determined from different behaviors of
the peaks due to rescaling and rotation. This may also provide a
useful clue to image authentication.

Index Terms—Image forgery, interpolation, passive authentica-
tion, rescaling, rotation.

1. INTRODUCTION

ITH the availability of powerful image editing tools,
W numerous image retouching techniques have become
practical, which can be used to create great artistic works.
However, malicious modification of image content forms a
serious threat to the secure and legal usage of digital images.
By skillful manipulation, forgery may be very difficult to
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recognize by the naked eye. Therefore, automatic detection of
image forgery has attracted much research interest. In recent
years, many image forgery detection techniques have been
proposed, especially passive approaches which do not require
any additional information besides the image itself [1], [2].
Some published methods make use of lighting abnormality [3],
blur moment invariants [4], and similarity/dissimilarity of color
and structural characteristics [5].

Several techniques for image authentication based on detec-
tion of image rescaling/rotation have been reported. Popescu
and Farid [6] presented their early method to find rescaling
traces hidden in any portion of an image without resorting to a
reference image by using expectation maximization (EM) [7].
Mahdian and Saic [8] used periodicity due to interpolation to
perform blind image authentication. They introduced Radon
transform on the basis of second derivative to detect rotation
without estimation of the rotation angle. In another work,
Mahdian et al. [9] used noise inconsistency to aid the detection
of image rescaling for image splicing detection. Kirchner [10]
constructed a rescaling detector based on periodic artifacts in
the residue of a local linear predictor. He analytically derived
the expected position of characteristic rescaling peaks and
formed a detector that was considerably faster than [6] with
comparable results. Prasad et al. [11] localized the tampered
areas by labeling a pixel as 1 where the second derivative
changes sign, otherwise labeling it as 0. A spectral analysis can
reveal the resampling induced periodicity. This method can
detect the presence of resampling operation, and is effective
for JPEG compression and subsequent rescaling of tampered
images.

In this work, we propose a method for rotation angle estima-
tion motivated by some rescaling detection methods, in partic-
ular that proposed by Gallagher [12], develop a unified way to
determine parameters of rescaling and rotation by exploring in-
terpolation-induced spectral signatures, and apply it to image
forensics.

Gallagher’s method exploits periodicity in the interpolated
image, which will be briefly described in Section II. In a more
recent work, Suwendi et al. [13] presented a method to estimate
rational enlargement factors in both vertical and horizontal di-
rections.

Existing methods for image rotation angle estimation are
mostly nonblind. They require prior knowledge about the
original image, a reference template, or features extracted from
the original. In [14], the rotation angle between the input and
the reference images was obtained from the peak of angle
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histogram generated through a voting procedure. Onishi et al.
[15] applied a modified version of Hough transform to the
reference and input images, and uniquely computed the angle
of rotation. Rotation angle estimation can be carried out from
texture features. In [16], a steerable oriented pyramid was
used to extract features for the input textures, followed by a
supervised classification. Ulas et al. [17] studied rotation angle
estimation of textures aiming at a real-time implementation.
A rotation invariant template matching method based on the
combination of a projection method and Zernike moments was
proposed to estimate rotation angle in [18].

Nonblind methods have limited values in applications since
the original image is unavailable in most practical cases. Blind
detection of image rotation and blind estimation of the rota-
tion angle are more useful. As will be shown in the following
sections, blind detection of rescaling/rotation and estimation of
the parameters provide a means to reveal image areas that are
foreign to the rest of the image. It will also be shown that, if
multiple geometrical operations are involved, the history of pro-
cessing may be determined from different behaviors of the spec-
tral peaks due to rescaling and rotation, respectively. This also
provides a useful clue for image forensics.

In Section II, an overview of Gallagher’s rescaling estima-
tion method is briefly introduced. In Sections III and IV, an
image rotation angle estimation technique is proposed, and
experimental results presented. Section V describes a method
for exploring the history of successive scaling and rotation.
Section VI presents an application of the rescaling/rotation esti-
mator to image forgery detection. Conclusions and discussions
are given in Section VIIL

II. OVERVIEW OF GALLAGHER’S METHOD AND ITS EXTENSION

According to Gallagher [12], a signal s(z) is sampled with a
step size A € R™ to produce a discrete data sequence s,, =
s(mA). The signal can be reconstructed from its samples

s (z) = i Smp (% - m) ()

m=—00

where ¢( -) is the interpolation function. For linear interpola-
tion p(z) = 1 — || where |z| < 1. Gallagher took the second
derivative of the interpolated signal, and showed that variance
of the second derivative is periodic with a period A. In [8], Mah-
dian et al. has generalized the method to the kth order derivative

D® ) (z) = i smD® (% _ m) )

m=—00

where D(*) is an operator of the kth order derivative, and
DO s#)(z) is s(¥) () itself when k = 0. Mahdian ef al. has
shown that

VID® @) (z 4+ pA)] = VID® s ()] 3)
where 1. is an integer, and V[-] means variance. In a word, inter-

polated signals and their derivatives have inherent periodicity.
We will confine to the case of k = 2.

For an image, a second-order difference vector of the pixel
values are calculated along each line, and all the obtained vec-
tors are then averaged. Due to the interpolation-induced peri-
odicity, discrete Fourier transform (DFT) of this average vector
contains peaks directly related to the scaling factor. Gallagher
obtained the factor of image enlargementas R = 1/ fin; or R =
1/(1 — fint), where fie € (0,1) is the normalized frequency
at which the spectral peak occurs. Because of the symmetry of
Fourier transform, the frequencies always occur in pairs and
are symmetrical about 1/2. We only consider fi,; < 1/2 in
this paper. Gallagher’s result may be reorganized as follows in
which fi,¢ is expressed as a function of the scaling factor R:

foo= J1-UR 1<R<2
int — l/R/

R > 2. )
In fact, the method can easily be extended to image size re-
duction

fmt:l/R_]- R<1 (5)

It is observed from (4) and (5) that each interpolation induced
peak corresponds to three R values in the regions (0, 1), (1, 2]
and (2, 00), respectively. For example, a peak at fi,; = 1/3
can be caused by size-reduction with R = 3/4, or enlargement
with R = 3/2 or 3. Ambiguities exist if judged solely by fi,.
Thus, use of a priori knowledge would be necessary to resolve
the problem as suggested in [12].

For size-reduction, fi,; will cross the symmetry center, 1/2,
when R is less than 2/3 so that 1 — fi,; may be used instead.
Nonetheless, we limit our discussion to R > 2/3 (corre-
sponding to fi,s < 1/2) because the peak becomes very weak
for small R. Further, we will show in the following that the case
of R < 1 does not occur in image rotation angle estimation.

III. PROPOSED METHOD FOR IMAGE ROTATION ANGLE
ESTIMATION

A. Estimation of Rotation Angle

To develop an image rotation angle estimator, consider the in-
terpolation involved in rotation. Assume that an image is rotated
about its center

(6)

7' = xcosf — ysinb
y = xsinf + ycosh

where (z,y) and (z’,y’) are the pixel coordinates before and
after rotation, respectively, f the rotation angle with positive
values indicating counterclockwise rotation. In most cases, the
rotated image is cropped and the same aspect ratio is kept.

As pixels are located on a rectangular grid, interpolation is
needed after any geometric transformation. Consider a fixed row
in the rotated image, 3y’ = h; the following relation can be ob-
tained by eliminating y:

1
cos

/
€r =

(z — hsin#). @)

Equation (7) gives a relation between the row coordinate after
rotation x’, projected onto the initial horizontal, and the initial
row coordinate x. Thus we see that rotation introduces rescaling
with a factor of 1/ cos#, calculated from the rows before and
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0 in degrees

Fig. 1. Peak frequency as functions of rotation angle. The solid and dotted lines
correspond to (8) and (10), giving frot1 and frot2, respectively.

after rotation. We obtain a pattern of 2-D second-order differ-
ence, i.e., the edge map, of the rotated image by convolving the
image with a Laplacian operator. Calculate 1-D DFT of each
line of the edge map and, from (4), obtain the frequency at
which the rotation-induced peak occurs (for brevity, referred to
as peak frequency in the following) in terms of the rotation angle
6 € (0°,90°)

frotl = { = COS&’

cosf,

0° < 6 <60°

60° < 6 < 90°. ®)

No interpolation is involved when 6 is 0° or 90°. Similarly, by
eliminating « from (6)

x = lg(hcosﬂ—y). )

S

This is another relation between the row coordinate after ro-
tation x’, projected onto the initial horizontal, and the initial
column coordinate ¥, indicating a rotation-introduced scaling
factor 1/ sin #. Thus we can obtain another peak frequency

ooz = {Sin 6,
rot2 —

1 —sin#,

0° <6 <30°

30° < 0 < 90°. (10)

Clearly, the scaling factors 1/ cos 6 and 1/sin 6 are greater
than unity. Fig. 1 shows the peak frequency as functions of the
rotation angle. The two curves, corresponding to (8) and (10),
respectively, are symmetrical about § = 45°.

Suppose the image size is M x N. We only consider its lumi-
nance component Y. The following are the proposed steps for
rotation angle estimation:

1) Edge map generation. Generate an edge map E by con-

volving Y with a 3 x 3 Laplacian operator.

2) Counter initialization. Reset the peak counter ¢(n), i.e., let
c(n) =0,n € [1,N].

3) Peak counting. For the mth row of E, denoted v(m) m =
1,2,..., M, calculate its discrete Fourier transform V (™)
using fast Fourier transform (FFT). If [V(™)(n)| is the
maximum within [n — §,n + 8],n = 1,2,..., N, then
update the counter: ¢(n) «— c¢(n) + 1. Here ¢ is chosen
empirically. Experiments show that § = 5 is appropriate.

4) Peak detection. Normalize c¢(n) to get a frequency-peak
count diagram. Only half of the diagram is considered be-

A0 in degrees

Fig. 2. Angular resolution of the detector as a function of V.

cause of the spectral symmetry. If a ¢(n) value is greater
than the median in a window W by a threshold 7', a peak
candidate is recorded as {c,((), f,(!)}. If no peak is de-
tected, the image is considered “not rotated.” In our exper-
iments, W = 5and T = 2.

Rotation angle calculation. Take the largest two peaks
found in Step 4. Calculate the angle from (8) and (10).

5

~

B. Resolution of the Estimator

According to (8) and (10), the angular resolution of the de-
tector sets the resolution of angle estimation. Considering 6§ =
sin™! f as in (10), the angular resolution can be obtained

Af = d_HAf: ;
df N1 —sin%4

which ranges from Af.;, = 1/N when 6 approaches 0° to
A pax = 2/(\/§N) at § = 30°. The angular resolution as a
function of IV is shown in Fig. 2, where the solid and dotted lines
are the lower and upper bounds. Clearly, the larger the image
size, the better the angular resolution, conforming to intuition.
If N = 64, for example, the upper bound of the estimation error
is in the range of (0.89°, 1.05°), depending on the rotation angle,
while for N = 512, the error is below 0.15°. Experimental
results agree with the analysis as will be shown in Section IV-A.

The resolution is independent of the number of rows M, pro-
vided it is not too small, because it does not affect the position
of the peak but only the strength with respect to the off-peak
spectral magnitudes. When M is very small, say, less than 32,
the peak becomes faint and may be indiscernible. For portraits,
it is better to use columns since a larger N provides higher an-
gular resolution according to (11). We will only consider rows
in this paper.

(11)

C. Distinguishing Rescaling and Rotation

Both rescaling and rotation use interpolation, leading to de-
tectable peaks in the DFT of the edge map along the row or
column direction. These peaks can be used to estimate the inter-
polation parameters. However, the two operations behave dif-
ferently in some aspects so that they can be distinguished.

In Step 3 of Section II-A, 1-D DFT of each row is first calcu-
lated, and the average is taken over all rows to get the horizontal
spectrum. An alternative method would be to average the rows
first, and then take 1-D DFT. Assume that entries of the edge
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Fig. 3. Averaged horizontal spectra of the rescaled Pepper’s edge map. Both
peaks at f; have similar heights.

map are E(m,n),m € [1, M],n € [1, N]. Using the first pro-
cedure, i.e., DFT + Averaging (DA), we have

Epa(w) = 37 > [F[E(m,n)] (12)

where the operator F' means discrete Fourier transform. The
second procedure [Averaging + DFT (AD)] can be expressed
as

EAD(w) =

[ ]

F[E(m,n)]|.

:i\

(13)

Sia

1

m

Curves of Epa(w) and Eap(w) have similar shapes, with the
former larger than the latter in general cases. But the difference
in peaks heavily depends on whether the operation is rescaling
or rotation.

Consider rescaling first. For example, enlarging the
512 x 512 Pepper by R = 2.3, the average spectrum of
its edge map is shown in Fig. 3. In the following, large DC
components in all similar plots are removed for display clarity.
In this figure, a sharp peak appears at f; = 1/R = 0.435 in
both curves, with a similar magnitude. We then plot the magni-
tudes and phase angles of the spectra at this peak frequency of
all 512 x 2.3 = 1177 rows as shown in Fig. 4. It is observed
that signs of the phase angles are the same for all rows, leading
to effective enhancement of the peak-to-background ratio of
the spectral curves when averaging the magnitudes, regardless
of which averaging method, (12) or (13), is used.

Now for image rotation, the rescaling factors are 1/ cos @
and 1/sin . The average spectra obtained from (12) and (13)
greatly deviate from each other due to differences in the spec-
tral phases. For example, rotating Pepper by 23°, the average
spectra of the magnitudes are shown in Fig. 5, in which the DA
method produces a curve with two clear peaks at f; = 0.082 and
f2 = 0.393, whereas the AD method produces a rather smooth
curve without discernible peaks. This can be explained by ob-
serving the spectral phases of all rows at these two frequencies.
In Fig. 6, the phase angles fluctuate around zero; therefore, the
magnitudes cancel out when averaged using (12).

2000,
3 A il W w My
2 i
=R
< oAt AR A AT b AL e g
2, 256 512 768 1024
Row

Fig. 4. Spectral magnitudes and phase angles (in radians) of all rows of the
rescaled image at fy. All phase angles have the same sign, leading to adding-up
of the magnitude when averaged using the AD method.

1000 DFT+Averaging
800 | Averaging+DFT |-
f
2 600! ; A
§ " /l ./2
g 400, !
p= U
2001 . |
0 | - b 2 + L -
0 0.1 0.2 0.3 0.4 0.5
Frequency

Fig. 5. Average row spectra derived from rotated Pepper.
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Fig. 6. Spectral magnitudes and phase angles (in radians) of all rows of the
rotated image at f; = 0.082. The phase angles fluctuate around zero, leading
to cancellation of magnitudes when averaged using the AD method.

In summary, when both (12) and (13) produce striking peaks,
the image is rescaled. When only (12) produces peaks but (13)
does not, the image is rotated.

IV. EXPERIMENTS ON ROTATION ANGLE ESTIMATION

A. Rotation Angle Estimation and Robustness Against Attacks

In the experiment, we took 200 uncompressed color and gray-
level images of different types from the USC-SIPI database [20],
sized 256 x 256, 512 x 512, and 1024 x 1024. These images
were rotated using the watermark attacking tool StirMark 4.0
[19] by angles from 1° through 5° with a 1° interval, and from
5° through 45° with a 5° interval, and cropped to remove the
useless borders while keeping the aspect ratios. Fig. 7 shows
such an example. The original image was 512 x 512, rotated
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Fig.7. Image rotated by 15° and cropped, and corresponding spectrum derived
from the edge map.

by 15° resulting in a smaller image of 419 x 419. The aver-
aged horizontal spectrum of the edge map of the rotated-cropped
image was obtained and presented in the figure. Peaks appeared
at frot1 = 0.035 and froto = 0.262, giving an estimated rota-
tion angle 15.2°, very close to the actual value.

Nearest neighbor, bilinear, and bicubic interpolations were
used in the rotation. We recorded the peak frequencies and cal-
culated the estimated angles. If the error is less than 0.5°, we
call it a correct estimate. Fig. 8(a) presents the percentages of
correct estimates C' with respect to the rotation angle 6, based
on an experiment on the 200 test images.

To evaluate robustness of the angle estimator against post-
processing of the image after rotation, three kinds of manipula-
tions were tested: contamination of zero mean Gaussian noise
with standard deviation 0.03 (pixel values were normalized to
[0, 1]), median filtering using a 3 X 3 mask, and arbitrary crop-
ping with 50% of the area cut off. Fig. 8(b)—(d) shows the re-
sults. The rate of correct estimation dropped in all these cases.
The bilinear and bicubic methods produced similar results with
the correct estimation rate slightly higher in the bilinear case
because it introduced more striking spectral peaks. Although a
bilinear-interpolated function is continuous in its values, it is
discontinuous in the derivatives of the first and higher orders.
In contrast, a bicubic-interpolated function is continuous in its
values and the first- and second-order derivatives, and discon-
tinuous in the derivatives of the third and higher orders, pro-
ducing weaker spectral peaks as compared to bilinear interpo-
lation. More sophisticated methods of interpolation keep even
higher order derivatives continuous, and therefore, are hard to
detect.

The nearest neighbor method produced poorer results. The
reason is that ruggedness of the interpolated signal introduces
spurious peaks in the spectrum, which, thus, greatly complicates
the detection. Nonetheless, the nearest neighbor method is not
widely used in practice and, if used, it is easy to detect by re-
vealing the unusual spectral peaks.

From Fig. §, the rate of correct estimation is low at small an-
gles, similar to the results given in [6] and [8], as in this case
the interpolation-induced peak is near the DC component, there-
fore, hard to detect. Another observation is a dip at 30°, corre-
sponding to frot2 = 0.5, which is one end of the frequency
range in which the peak search is performed. The single-side
search produces inferior results. If judged by human eyes, the
result may be improved.

B. Influence of JPEG Compression and Experiments

The 8 x 8 blocks in the JPEG coding can cause spectral peaks
at f =i/8,4 = 1,2, and 3. When the quality factor is low, the
peaks become quite large. Fig. 9 shows the spectrum of Baboon
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Fig. 8. Rate of correct estimation versus rotation angle. (a) Without attack.
(b) Contaminated by additive Gaussian noise. (c) After median filtering.
(d) Cropped.

(originally 512 x 512), rotated by 13° and cropped, and then
JPEG coded with a quality factor () = 85.Peaksati/8,i = 1,2,
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Fig. 9. Spectrum of the edge map of Baboon, rotated by 13°, cropped, and
JPEG-compressed.
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Fig. 10. Rate of correct estimation versus rotation angle based on 100 test im-
ages. (a) Tested images uncompressed. (b) Tested images JPEG-compressed
with @, = 85.

and 3 due to block-DCT are marked with crosses, and the rota-
tion-induced peaks by triangles. Since the JPEG-caused peaks
are small, we can still pick the largest peak at f.o; = 0.227 to
give an accurate estimate of 13.09°.

To study the JPEG effects, we took 100 uncompressed images
sized 512 x 512 and 1024 x 1024 from [20]. The images were
rotated by the same set of angles as in the experiments of the pre-
vious subsection, using bicubic interpolation, and JPEG-com-
pressed with different () values. Rotation angles were estimated.
The results are shown in Fig. 10(a), giving the rates of correct
estimation (when estimation error is less than 0.5°) for different
angles and different () values. We observe that the performance
is worsened with () decreasing. It is more so when the rotation
angles are large.

The second part of the experiment is conducted on images
that have been JPEG compressed. In this case, the block DCT-
related peaks originally at frequencies of i/8 will be slightly
shifted after rotation. When the rotated image is stored in the

JPEG format, there will be three groups of peaks: the rota-
tion-induced peaks, peaks near /8 due to the first JPEG and
rotation, and those at ¢/8 due to the second JPEG. In this case,
performance of the rotation angle estimator is inevitably wors-
ened as compared to the previous case where images before ro-
tation were uncompressed.

We JPEG-compressed the same 100 images with ()1 = 85,
and then went through the same rotation-compression-estima-
tion procedure. The results are presented in Fig. 10(b). We can
see that JPEG before rotation has moderate effects on the perfor-
mance when the rotation angle is less than 20°. The influence
becomes more serious as the angle increases. Performance at
small angles appeared better than Fig. 8 because the smallest
images (256 x 256) were not used here.

V. SUCCESSIVE SCALING AND ROTATION

In image forgery detection, it is useful to learn the processing
chain and the parameters used in each step [21], [22]. As rotation
and rescaling behaves differently, we now show that, in certain
cases, different combinations of these two operations can be dis-
tinguished and the parameters estimated. The four possibilities
are double zooming (DZ), rotation-zooming (RZ), zooming-ro-
tation (ZR), and double rotation (DR).

A. Double Zooming

Assume the first scaling factor is R;. If the second operation
were not performed, the interpolation-caused peaks in the DFT
of the edge map would have been at frequencies 1/Ry,1—1/R;
or 1/Ry — 1. These peaks do not appear because of the second
operation. The second zooming with a factor of Rs produces
spectral peaks at 1/R2,1 — 1/Ry or 1/Ry — 1, and, as a result
of successive operations, at several composite frequencies that
are multiplications of single zooming frequencies such as

foz = 1/(R1R»)
and

foz = (1/R1)(1 - 1/Ry).

These frequencies are generated by the total rescaling factor
Ry R>. If fpyz is greater than 1/2, 1 — fpyz is used instead. The
same applies to the subsequent subsections, and will not be re-
stated.

To give an explanation to the occurrence of peaks at com-
posite frequencies, taking double zooming-in as an example, let
us consider a row in the original image and rescale it by R
using bilinear/bicubic interpolation. Stretch the sequence of in-
terpolated samples to fit the pixel grid so that the interval be-
tween samples becomes one. This gives a row in the zoomed-in
image, denoted I; (m). Resample the sequence I1(m) at an in-
terval As = 1/Rs, to produce a new sequence. In the same
way, stretch the new sequence to fit the grid, giving a row in
the double-zoomed image, denoted I>(m). This image has a
zooming factor Ry with respect to I;(m), and Ry R, with re-
spect to the original. According to Gallagher, variance of the
second derivative of I»(m) has a period, i.e., the normalized
peak frequency, 1/R; R in addition to 1/Rs.

For example, we enlarge Pepper by a factor of 2.3, and en-
large it again by 1.5. The average magnitudes of the spectra are

(14)



WEI et al.: ESTIMATION OF IMAGE ROTATION ANGLE USING INTERPOLATION-RELATED SPECTRAL SIGNATURES

600 S g
DFT+Averaging
Averaging+DFT
8 400, veraene ,.
E e
E() i ]3
< | .
= 200 |5 |
w
0 17"‘ v . tomvl V™ il 8 e N 1
0 0.1 0.2 0.3 0.4 0.5
Frequency
(a)
2000 | DFT+Averaging |
‘[ Averaging+DFT
-Qg’ 1500 | 1
Z 1000 o
£ i
500 A b A l
0o 01 02 03
Frequency
(b)

Fig. 11. Average spectra of the successively rescaled Pepper. (a) Zoomed-in
by 2.3 and then zoomed-in by 1.5. (b) Zoomed-in by 2.3 and then zoomed-out
by 0.8.

shown in Fig. 11(a). Three peaks are detected at f; = 0.290,
f2 =10.333, and f3 = 0.377. The second zooming of 1.5 corre-
sponds to a peak at f5. The other two are composite frequencies.
The zooming factors can, therefore, be calculated from these
frequencies. The same applies to zooming-out. Fig. 11(b) shows
an example in which the Pepper is first zoomed-in by a factor
2.3, and then zoomed-out by 0.8. The peaks at fo = 0.251 cor-
respond to the zooming-out, and f; = 0.164, f3 = 0.293, and
fa = 0.457 are composite frequencies.

B. Rotation-Zooming

In image forgery using a copy—move method, the inserted ob-
ject may be rotated and rescaled to merge into the surroundings.
Assume that the rotation angle is 6, corresponding to the peak
frequencies at sinf,cosf,1 — sinf, and 1 — cos f that would
have appeared without further geometric transformation. After
rotation, the image is rescaled with a factor R, leading to peaks
at1/R,1—1/R,and 1/R — 1, and a number of composite fre-
quencies such as

fRZ = (1/R> sin ¢
and

frz = (1/R)(1 — cos¥). (15)

Suppose Pepper is rotated by 20° followed by rescaling with
a factor 1.3. The average spectra of the rows in the edge map are
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Fig. 12. Average spectra of rotated-zoomed Pepper. (a) Rotated by 20° and
zoomed-in by 1.3. (b) Rotated by 20° and zoomed-out by 0.8.

presented in Fig. 12(a). Peaks at f; = 0.048, fo = 0.231, and
f3 = 0.264 are detected, where f; and f3 correspond to rota-
tion-zooming, and f, corresponds to the 1.3 rescaling. All three
peaks appear in the DA curve and only the one at fo in both
curves, indicating a sequence of rotation-zooming. Fig. 12(b)
shows another example in which the image is rotated by 20°
and then zoomed-out with a factor 0.8. The peaks appear at
fi = 0.252 and f, = 0.430, where the latter is due to rota-
tion-zooming.

C. Zooming-Rotation

Let the zooming factor be R, and the subsequent rota-
tion angle #. The rotation introduces peaks at frequencies
sinf,cosf,1 — sinf, and 1 — cos#, and several composite
frequencies such as

fzr = (1/R)sinb, fzr = (1 —1/R)sinf
and
fzr = (1/R) cosb. (16)

Assuming Pepper is enlarged by 2.3, and then rotated by
20°, six peaks are found at f; = 0.062, fo = 0.149, f3 =
0.194, f4 = 0.343, f5 = 0.409, and f¢ = 0.470 as shown
in Fig. 13(a). The rotation of 20° corresponds to f; and f4,
and the others are composite frequencies, e.g., f¢ = 1 — (1 —
1/2.3) cos 20° = 0.470. Since the last operation is rotation, no
peak is found in the average spectrum calculated from (13). In
Fig. 13(b), the average spectra for the image are shown with
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Fig. 13. Average spectra of zoomed-rotated Pepper. (a) Zoomed-in by 2.3 and
then rotated by 20°. (b) Zoomed-out by 0.8 and then rotated by 20°.
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Fig. 14. Average spectra of Pepper rotated by 20° and 20° in succession.

peaks at f; = 0.062, fo = 0.236, and f3 = 0.343, where f5 is
due to zooming by 0.8 and rotation by 20°.

D. Double Rotation

Suppose the first rotation angle is #; corresponding to peaks
at frequencies sin 61, 1 —sin 1, cos #;, and 1 —cos 6, that would
have appeared if no further operations were performed. The
second rotation causes a number of peaks, e.g., sinfl; and 1 —
sin 0o, as well as composite frequencies such as

fpR = sin fy cos b,
and

fpr = cos By sin f,. 17)

Assume the Pepper is rotated twice by 20° and 20° succes-
sively. The spectra are shown in Fig. 14, with four peaks at fre-
quencies f; = 0.063, fo = 0.176, f3 = 0.303, and f; = 0.344.

The second rotation corresponds to the peaks at f; and fs. The
others are composite frequencies. As in the previous case, no
peak exists in the average spectrum based on (13) because the
final operation is rotation. Note that double rotation is different
from a single rotation by (61 + 65).

E. Discussion and Experiments

Based on the above study, we can easily identify the nature
of the most recent operation, rescaling or rotation, and estimate
its parameters. Confining to double operation, if the second op-
eration is zooming, the nature of the first operation can also be
determined by observing the difference between the AD and DA
curves. In this case, if the same peaks appear in both curves as in
Fig. 11, the first operation should be zooming. If, on the other
hand, the DA curve has more peaks than the AD curve as in
Fig. 12, the first operation is rotation. However, if the second
operation is rotation, there is no simple way to tell whether the
previous operation is zooming or rotation.

Taking the same set of 100 images used in Section IV-B, we
performed an experiment to check the double operation-caused
peak frequencies. Bilinear interpolation was used. Zooming ra-
tios 0.8, 1.3, 1.8, and 2.3, and rotation angles 5°, 10°, 15°,
and 20° were tested. With the combinations DZ, RZ, ZR, and
DR, a total of 64 computations were done for each image. Ro-
tation was followed by cropping as before. Parameters of the
first operations were derived from the detected spectral peaks
in automatic detection. If the estimation error of the first rota-
tion angle was less than 0.5°, or that of the first scaling factor
less than 0.2, we say the estimate was correct. Percentages of
correct estimates are listed in Table I. Reasonably high correct
rates were observed in cases of DZ, RZ, and ZR except for
zooming-out. Double rotation showed lower correct rates, and
double zooming-out was hard to detect. In fact, for many cases
in which automatic detection was difficult, peaks due to double
operation were still visible. Examples can be seen in Figs. 12(b),
13(b) and 14, in which some discernible peaks fall into the three
categories marked with asterisks in Table 1. Thus the correct
rates would be higher if detected by human inspection.

VI. APPLICATIONS IN IMAGE FORGERY DETECTION

The technique described in the previous sections can be used
to combat image forgery involving interpolation. Many tech-
niques of image authentication have been introduced such as
copy—move detection [23] and exposing forgery based on the
color filter array (CFA) interpolation [24], [25]. In this section,
we describe an application of the proposed method of rescaling/
rotation detection and parameter estimation to image authenti-
cation, and present experimental results. It is hoped that, as said
in [26], the method will add a new tool to the arsenal of forensic
analysts.

A. The Method

Common image forgery methods of copy—move and image
splicing compose a new image with fake parts from varied
sources, in many cases accompanied by rescaling and rotation
of image patches. We detect foreign objects by revealing un-
usual spectral peaks of local second-order differences in the
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TABLE I
RATES OF CORRECT ESTIMATES FOR DOUBLE OPERATIONS BASED ON
AUTOMATIC DETECTION OF SPECTRAL PEAKS. SHORT BARS INDICATE THAT
CORRECT RATES ARE LESS THAN 30%. ASTERISKS SHOW CATEGORIES
CORRESPONDING TO FIGS. 12(b), 13(b), AND 14 IN WHICH PEAKS ARE VISIBLY
RECOGNIZABLE ALTHOUGH AUTOMATIC DETECTION IS HARD
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zooming rotation

0.8 13 1.8 23| 5° 10° 15° 20°

w | 0.8 | - DTN

E 1.3 36 79 87 84 |38 57 70 42
§ g 1.8 40 78 77 75 | 62 42 73 76
Bl " 123]45 73 8 7773 70 70 68
s - 5° - 77 74 77 | 61 68 64 66
21 g |10 - 68 70 61 |67 354 46 45
% 15° - 74 76 68 | 52 49 37 -
Tl200 | o» 72 72 53 )48 40— (%

image. Assume the image to be checked has a size of M x N.
The detection steps are as follows:

1) Differentiation. Take the luminance components Y of the
image, and get the Laplacian edge map E.

2) Blocking. Divide the edge map into overlapped blocks,
each sized B x B with overlapping area between each pair
of blocks being L x B(L < B). The block size should
not be too small, say, at least 32 x 32. We recommend
64 x 64 or larger, depending on the size of the image being
checked. Larger overlapping areas lead to better accuracy
but require more computations.

3) Block-wise forgery detection. For each block, generate an
average spectrum derived from discrete Fourier transform
of all rows in the block and, if peaks exist, record the cor-
responding frequencies to determine its status of rescaling
and/or rotation. If no peak is found, the block is discarded.

4) Frequency histogramming. Produce a histogram of the

peak frequencies using the above results. Let the number
of bins equal B so that every possible frequency can be
represented.

Foreign object identification. Scan the nonzero bins in the
histogram. Blocks corresponding to populated frequencies
in the histogram are labeled as “suspicious.” A foreign ob-
ject can be identified by connected suspicious blocks. The
nature of forgery and the processing parameters including
the rescaling factor and the rotation angle are found from
the record obtained in Step 3. Sporadic suspicious blocks
may be ignored based on the human judgment.

5

~

B. Experimental Verification

We generated forged images using Photoshop to modify
an original authentic image sized 2256 x 1504 as shown in
Fig. 15(a). The authentic image was obtained by converting a
RAW picture acquired with a digital single lens reflex camera
to the JPEG format using Photoshop with the highest quality
index 12. The image is cropped to an appropriate size without
rescaling. We took a rectangular area in the image around a
fruit fly, rotated it by 15°, and put it back to the image to cover
the original insect, as in Fig. 15(b). Careful postprocessing was
conducted to make the forged picture look natural. Detection
was carried out with a block size 128 x 128 and overlapping
areas of 96 x 128, giving the result shown in Fig. 15(c). The

Fig. 15. Image forgery detection: a fruit fly is inserted after rotation and/or en-
largement. (a) Original image. (b) Object rotated. (c) Detection result. (d) Object
rotated and enlarged. (e) Detection result.

modified insect was detected. False alarms occurred sporad-
ically. This can be overcome by omitting isolated abnormal
blocks or small areas containing only a few such blocks, deter-
mined by a threshold based on human judgments.

In Fig. 15(d), the fruit fly was rotated by 25° and enlarged
with a factor of 2.1. The original insect was carefully erased.
The detection result is shown in Fig. 15(e). Two peaks occurred
at f; = 0.20 and fo = 0.48 when (12) was used in the av-
eraging. However, only fy appeared when using (13) for av-
eraging. A rescaling factor of 2.1 was obtained from f5. Fre-
quency fi is a result of rotation-zooming with the rotation angle
f = sin™*(0.20 x 2.1) = 25°. Since the 2.1 times rescaling pro-
duced a large peak, no false alarm occurs in this case.

The experiment was performed on a computer with Pentium
D CPU running at 2.8 GHz and a 512-MB memory, and using
Matlab. The computations took about 210 s.

In another example, a large image sized 3092 x 2061 is used
as shown in Fig. 16(a), with the same setting of the blocks and
overlaps as in the previous experiment. The original image
was generated in the same way as in Fig. 15(a). An eagle
(592 x 395 BMP), shown in Fig. 16(b), was rotated by 25°
without rescaling, and added to the sky. To make the modifica-
tion natural, the Photoshop’s layers and masks were carefully
used to avoid visible artifacts. The composite image shown in
Fig. 16(c) was saved in the JPEG format at Photoshop’s quality
index 12. The forged image was reloaded into the computer
memory for detection. The JPEG-induced spurious peaks at
frequencies of i/8 were identified and ignored. The result is
shown with a detected peak at f = 0.42. The second peak
was too small to be identified. Therefore, two possible angles
6 = 25° or 35° can be estimated from the single peak frequency
(see Fig. 1). The computation took 403 s.

In Fig. 17, an inserted insect in the foreground and a fake
background on the left side were detected. The insect was
rotated by 25° counterclockwise before insertion. The added
background was rotated by 18° clockwise, Gaussian blurred
with a radius of 3 pixels, feathered around the boarder areas,
and reduced to opacity of 50% before being put onto the image.
The image sized 1995 x 1330 was in the JPEG format. It took
157 s to detect.

Fig. 18 shows an example of image splicing detection. A
panoramic image sized 951 x 318 was obtained by combining
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Fig. 16. Image forgery detection: a bird is added in the sky after rotation of
25°. (a) Original image. (b) Eagle. (c) Forged image and detection result.

(®)

Fig. 17. Image forgery detection: an insect is put on the flower after rotation
by 25°. Background is added after rotation by 18° and Gaussian blurring with
a radius of 3 pixels, with transparency of 50%. (a) Original image. (b) Forged
image. (c) Detection result.
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Fig. 18. Image splicing detection: the right half has been rotated by 2°.
(a) Image 1. (b) Image 2. (c) Combined image and detection result.

two uncompressed pictures. The computation indicates that the
right half has been rotated by 2°. The detection took 13 s. Ro-
tation of flat areas in the sky was difficult to detect since inter-
polation had very little effects there. This is not important in the
detection though.

VII. CONCLUSION

Interpolation operations are performed in image rescaling
and rotation, which introduce periodicity in the image. This
can be used to estimate the factor of digital image rescaling.
We have developed an image rotation angle estimator based on
interpolation artifacts with satisfactory accuracy. It has been
shown that the estimation scheme works well for small images,
for example, as small as 64 x 64. Combined with rescaling
factor estimation, capability of locating rotated small image
patches and estimating the rotation angle makes it possible
to detect image forgery involving geometrical transformation.

Experiments have shown effectiveness of the technique. The
method can also be used to discover the image’s geometric
transformation history involving rescaling and rotation, pro-
viding a useful clue in passive image authentication.

Passive image authentication using interpolation-signatures
as presented in this paper can locate the areas of tampering,
provide the related parameters, and reveal the order of the pro-
cessing sequence in some cases. Since no time-consuming iter-
ation is involved and the major operation performed in the de-
tection is FFT, computation complexity of the algorithm is not
high.

As curves plotted in Fig. 1 are symmetrical, the rotation angle
estimator always gives two results, one below 45° and the other
above, leading to ambiguity. This may be overcome by using
some a priori knowledge. In practice, however, rotation by more
than 45° is rare.

Blind detection of image forgery is a difficult task. For the
copy—move type of image tampering, reliable detection of very
small image areas is still a challenge. When postprocessing is
done such as JPEG coding with a low quality factor, detec-
tion becomes more difficult. Moreover, to evade rescaling/ro-
tation detection, more sophisticated interpolation methods can
be used, and image manipulations may be done to make the
rescaling traces undetectable [27]. All these have become moti-
vations for the development of further improved forensic tech-
niques.

REFERENCES

[1] H. Farid, “Image forgery detection,” IEEE Signal Process. Mag., vol.
26, no. 2, pp. 16-25, Mar. 2009.

[2] A. Swaminathan, M. Wu, and K. J. R. Liu, “Component forensics,”
IEEE Signal Process. Mag., vol. 26, no. 2, pp. 3848, Mar. 2009.

[3] M. K. Johnson and H. Farid, “Exposing digital forgeries in complex
lighting environments,” IEEE Trans. Inf. Forensics Security, vol. 3, no.
2, pp. 450-461, Jun. 2007.

[4] B. Mahdian and S. Saic, “Detection of copy-move forgery using a
method based on blur moment invariants,” Forensic Sci. Int., vol. 171,
no. 2-3, pp. 180-189, 2007.

[5] W.Luo, J. Huang, and G. Qiu, “Robust detection of region-duplication
forgery in digital image,” in Proc. 18th Int. Conf. Pattern Recognition,
Hong Kong, 2006, pp. 746-749.

[6] A. C. Popescu and H. Farid, “Exposing digital forgeries by detecting
traces of resampling,” IEEE Trans. Signal Process., vol. 53, no. 2, pt.
2, pp. 758-767, Feb. 2005.

[7]1 A.P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. Royal Statist. Society,
Series B: Methodol., vol. 39, no. 1, pp. 1-38, 1977.

[8] B.Mahdian and S. Saic, “Blind authentication using periodic properties
of interpolation,” IEEE Trans. Inf. Forensics Security, vol. 3, no. 3, pp.
529-538, Sep. 2008.

[9] B. Mahdian and S. Saic, “Detection of resampling supplemented with
noise inconsistencies analysis for image forensics,” in Proc. Int. Conf.
Computational Sciences and Its Applications, 2008, pp. 546-556.

[10] M. Kirchner, “Fast and reliable resampling detection by spectral anal-
ysis of fixed linear predictor residue,” in Proc. 10th ACM Workshop
Multimedia and Security, 2008, pp. 11-20.

[11] S.Prasad and K. Ramakrishnan, “On resampling detection and its ap-
plication to detect image tampering,” in Proc. IEEE Int. Conf. Multi-
media and EXPO, 2006, pp. 1325-1328.

[12] A. C. Gallagher, “Detection of linear and cubic interpolation in JPEG
compressed images,” in Proc. 2nd Canadian Conf. Computer and
Robot Vision, Washington, DC, 2005, pp. 65-72.

[13] A. Suwendi and J. P. Allebach, “Nearest-neighbor and bilinear resam-
pling factor estimation to detect blockiness or blurriness of an image,”
J. Electron. Imag., vol. 17, no. 2, pp. 023005—, 2008.

[14] Y. Xiong and F. Quek, “Automatic aerial image registration without
correspondence,” in Proc. 4th IEEE Int. Conf. Computer Vision Sys-
tems, 2006, pp. 25-33.



[15] H. Onishi and H. Suzuki, “Detection of rotation and parallel translation
using Hough and Fourier transforms,” in Proc. IEEE Int. Conf. Image
Processing, 1996, pp. 827-830.

[16] H. Greenspan, S. Goodman, and R. Perona, “Rotation invariant texture
recognition using a steerable pyramid,” in Proc. 12th IAPR Int. Conf.
Pattern Recognition, 1994, vol. 2, pp. 162-167.

[17] C. Ulas et al., “Rotation angle estimation algorithms for textures and
their real-time implementation on the FU-SmartCam,” in Proc. 5th Int.
Symp. Image and Signal Processing and Analysis, 2007, pp. 469-475.

[18] M. Choi and W. Kim, “A novel two stage template matching method
for rotation and illumination invariance,” Pattern Recognit., vol. 35, no.
1, pp. 119-129, 2002.

[19] Stirmark Benchmark 4.0 [Online]. Available: http://www.petitcolas.
net/fabien/watermarking/stirmark/

[20] USC-SIPI Image Database [Online]. Available: http://sipi.usc.edu/
database/

[21] A.Swaminathan, M. Wu, and K. J. R. Liu, “Digital image forensics via
intrinsic fingerprints,” IEEE Trans. Inf. Forensics Security, vol. 3, no.
1, pp. 101-117, Mar. 2008.

[22] W.-H. Chuang, A. Swaminathan, and M. Wu, “Tampering identifica-
tion using empirical frequency response,” in Proc. IEEE Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP’09), Apr. 2009, pp.
1517-1520.

[23] J. Fridrich, D. Soukal, and J. Luk4s, “Detection of copy-move forgery
in digital images,” in Digital Forensic Research Workshop, Cleveland,
OH, Aug. 2003.

[24] A. C. Popescu and H. Farid, “Exposing digital forgeries in color filter
array interpolated images,” IEEE Trans. Signal Process., vol. 53, no.
10, pp. 3948-3959, Dec. 2005.

[25] A.C. Gallagher and T. Chen, “Image authentication by detecting traces
of demosaicing,” in IEEE Computer Society Conf. Computer Vision
and Pattern Recognition Workshops, 2008, pp. 1-8.

[26] H. Farid, “Exposing digital forgeries from JPEG ghosts,” IEEE Trans.
Inf. Forensics Security, vol. 4, no. 1, pp. 154-160, Mar. 2009.

[27] M. Kirchner and R. Bohme, “Hiding traces of resampling in digital
images,” IEEE Trans. Inf. Forensics Security, vol. 3, no. 4, pp. 582-592,
Dec. 2008.

Weimin Wei received the M.Eng. degree from
Wuhan University, China, in 2004, and the Ph.D.
degree from Shanghai University, China, in 2010.
Currently, he is with School of Computer and
Information Engineering, Shanghai University of
Electric Power, China. His research interests include
image processing, digital forensics, and data mining.

WEI et al.: ESTIMATION OF IMAGE ROTATION ANGLE USING INTERPOLATION-RELATED SPECTRAL SIGNATURES 517

Shuozhong Wang received the B.Sc. degree from
Peking University, China, in 1966 and the Ph.D.
degree from the University of Birmingham, Birm-
ingham, England, in 1982.

Currently, he is a Professor of Shanghai Uni-
versity, Shanghai, China. His research interests
include image processing, multimedia security, and
underwater acoustics.

Xinpeng Zhang received the B.Sc. degree in com-
putation mathematics from Jilin University, China, in
1995, and the M.Eng. and Ph.D. degrees in communi-
cation and information systems from Shanghai Uni-
versity, Shanghai, China, in 2001 and 2004, respec-
tively.

Currently, he is a Professor of Shanghai Univer-
sity. His research interests include image processing
and digital forensics.

Zhenjun Tang received the M.Eng. degree from
Guangxi Normal University, Guilin, China, in 2006,
and the Ph.D. degree from Shanghai University, in
2010.

Currently, he is with Guangxi Normal University.
His research interests include image processing and
information security of digital media.



